This systematic review examined whether event-related potentials (ERPs) during higher cognitive processing can detect subtle, early signs of neurodegenerative disease. Original, empirical studies retrieved from PsycINFO and PubMed were reviewed… Click to show full abstract
This systematic review examined whether event-related potentials (ERPs) during higher cognitive processing can detect subtle, early signs of neurodegenerative disease. Original, empirical studies retrieved from PsycINFO and PubMed were reviewed if they analyzed patterns in cognitive ERPs (≥150 ms post-stimulus) differentiating mild cognitive impairment (MCI), Alzheimer's disease (AD), or cognitively intact elders who carry AD risk through the Apolipoprotein-E ε4 allele (ε4+) from healthy older adult controls (HC). The 100 studies meeting inclusion criteria (MCI = 47; AD = 47; ε4+ = 6) analyzed N200, P300, N400, and occasionally, later components. While there was variability across studies, patterns of reduced amplitude and delayed latency were apparent in pathological aging, consistent with AD-related brain atrophy and cognitive impairment. These effects were particularly evident in advanced disease progression (i.e., AD > MCI) and in later ERP components measured during complex tasks. Although ERP studies in intact ε4+ elders are thus far scarce, a similar pattern of delayed latency was notable, along with a contrasting pattern of increased amplitude, consistent with compensatory neural activation. This limited work suggests ERPs might be able to index early neural changes indicative of future cognitive decline in otherwise healthy elders. As ERPs are also accessible and affordable relative to other neuroimaging methods, their addition to cognitive assessment might substantively enhance early identification and characterization of neural dysfunction, allowing opportunity for earlier differential diagnosis and targeting of intervention. To evaluate this possibility there is urgent need for well-powered studies assessing late cognitive ERPs during complex tasks, particularly in healthy elders at risk for cognitive decline.
               
Click one of the above tabs to view related content.