Changes within the dopaminergic system induced by repetitive transcranial magnetic stimulation (rTMS) may contribute to its therapeutic effects; however, dopamine-related behavioral effects of rTMS have not been widely investigated. We… Click to show full abstract
Changes within the dopaminergic system induced by repetitive transcranial magnetic stimulation (rTMS) may contribute to its therapeutic effects; however, dopamine-related behavioral effects of rTMS have not been widely investigated. We recently showed that ephrin-A2A5-/- mice completed significantly fewer trials in a visual task than wildtype mice, and that concurrent low-intensity (LI-) rTMS during the task could partially rescue the abnormal behavior [Poh et al. 2018, eNeuro, vol. 5]. Here, we investigated whether the behavioral differences in ephrin-A2A5-/- mice are due to abnormal motivation, primarily a dopamine-modulated behavior, and whether LI-rTMS would increase motivation. Ephrin-A2A5-/- and wildtype mice underwent 14 daily sessions of progressive ratio (PR) tasks and received either sham or LI-rTMS during the first 10 minutes. Ephrin-A2A5-/- mice responded more than wildtype comparisons and LI-rTMS did not influence task performance for either strain. Therefore concurrent stimulation does not influence motivation in a PR task. However, ephrin-A2A5-/- mice did have abnormal performance in the PR tasks after a change in the PR schedule which suggests perseverative behavior. We stained for c-Fos in the prelimbic area (PrL), ventral tegmental area and nucleus accumbens (NAc) core and shell to examine neuronal activity from the final PR session. Sham ephrin-A2A5-/- mice had lower c-Fos expression in the PrL and NAc vs. wildtype mice. Ephrin-A2A5-/- mice that received LI-rTMS showed c-Fos expression closer to wildtype levels in the NAc. Combined with high PR performance, ephrin-A2A5-/- mice show an abnormal shift to habitual responding and LI-rTMS may attenuate this shift.
               
Click one of the above tabs to view related content.