LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ephestia kuehniella tolerance to Bacillus thuringiensis Cry1Aa is associated with reduced oligomer formation.

The basis of the different susceptibility of Ephestia kuehniella to the Cry1Aa and Cry1Ac δ-endotoxins from Bacillus thuringiensis kurstaki BNS3 was studied. Both toxins bound specifically to the BBMV of… Click to show full abstract

The basis of the different susceptibility of Ephestia kuehniella to the Cry1Aa and Cry1Ac δ-endotoxins from Bacillus thuringiensis kurstaki BNS3 was studied. Both toxins bound specifically to the BBMV of E. kuehniella. The result of the ligand blot showed that Cry1Ac bound to three putative receptors of about 100, 65 and 80 kDa and Cry1Aa interacted only with a 100 kDa protein. Pronase digestion of the BBMV-bound toxins was used to analyze the toxin insertion. Both toxins inserted into the BBMV as monomers however, a 14 kDa peptide of α4-α5 which correspond to the oligomeric form of this peptide was detected in case of Cry1Ac only. Analysis of the in vitro oligomerisation of these toxins in the presence of the BBMV of E. kuehniella showed reduced oligomer formation in case of Cry1Aa in comparison with Cry1Ac. Taken together, these results strongly suggest that the difference of toxicity between Cry1Aa and Cry1Ac to E. kuehniella is due to a deficient oligomerisation of Cry1Aa.

Keywords: cry1aa; ephestia kuehniella; cry1ac; reduced oligomer; kuehniella; bacillus thuringiensis

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.