LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MiR-181c restrains nitration stress of endothelial cells in diabetic db/db mice through inhibiting the expression of FoxO1.

Photo by ospanali from unsplash

Endothelial dysfunction played an important role in the progression of diabetes mellitus (DM). miR-181c has been implicated in many diseases, including DM. However, the molecular mechanisms of miR-181c regulate this… Click to show full abstract

Endothelial dysfunction played an important role in the progression of diabetes mellitus (DM). miR-181c has been implicated in many diseases, including DM. However, the molecular mechanisms of miR-181c regulate this process remained poorly understood. Healthy ICR mice were divided into control group (n = 10) and db/db DM group (n = 10). The expression of miR-181c and FoxO1 were both investigated in diabetic db/db mice or high glucose-induced endothelial cells (MAECs and END-D). Here we found that down-regulation of miR-181c and the activation of FoxO1/iNOS were observed in mice and endothelial cells. Furthermore, we verified that miR-181c directly targeted and inhibited FoxO1 gene expression by targeting its 3'-UTR through luciferase reporter assay. Knockdown of FoxO1 reversed the up-regulation of iNOS, nitrotyrosine and the down-regulation of p-eNOSSer1177/eNOS in high glucose (30 mM)-induced MAECs cells. In addition, over-expression of miR-181c could reverse the enhanced nitration stress induced by high glucose, while this effect could be attenuated by pcDNA-FoxO1 in MAECs. These results shown that miR-181c attenuated nitration stress through regulating FoxO1 expression and affecting endothelial cell function, which offering a new target for the development of preventive or therapeutic agents against DM.

Keywords: foxo1; mir 181c; expression; endothelial cells; nitration stress; diabetic mice

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.