LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model.

Photo from wikipedia

Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses… Click to show full abstract

Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would enhance antitumor immunity of HCC and synergize with anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor in treating HCC. The sources and immune modulating effects of IL-6 were investigated in HCC models. Combination of anti-IL-6 and anti-PD-L1 was tested in HCC bearing mice. We found that IL-6 is mainly secreted by cancer associated fibroblast (CAFs), but not tumor cells in HCC. High IL-6 expression CAFs could induce strong immunosuppression in HCC microenvironment by recruiting immunosuppressive cells, such as myeloid derived suppressive cells. In addition, high IL-6 expression CAFs also impaired tumor infiltrating T-cell function via upregulating inhibitory immune checkpoints. Using IL-6 blockade could reverse anti-PD-L1 resistance in HCC tumor model. In conclusion, our study indicates that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in HCC, providing a potential strategy to overcoming anti-PD-L1 resistance in HCC.

Keywords: hepatocellular carcinoma; combination; hcc; blockade; cancer

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.