LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation.

Photo by timmossholder from unsplash

Poly(ADP-ribose) polymerases (PARPs) use nicotinamide adenine dinucleotide (NAD+) as a co-substrate to transfer ADP-ribose when it releases nicotinamide as the metabolized product. Enzymes of the PARP family play key roles… Click to show full abstract

Poly(ADP-ribose) polymerases (PARPs) use nicotinamide adenine dinucleotide (NAD+) as a co-substrate to transfer ADP-ribose when it releases nicotinamide as the metabolized product. Enzymes of the PARP family play key roles in detecting and repairing DNA, modifying chromatin, regulating transcription, controlling energy metabolism, and inducing cell death. PARP14, the original member of the PARP family, has been reported to be associated with the development of inflammatory diseases and various cancer types, making it a potential therapeutic target. In this study, we purified the macrodomain-containing PARP14 enzyme and established an assay for detecting the auto-ribosylation activity of PARP14 using RapidFire high-throughput mass spectrometry and immunoradiometric assay using [3H]NAD+. Subsequently, we performed high-throughput screening using the assays and identified small-molecule hit compounds, which showed NAD+-competitive and PARP14-selective inhibitory activities. Co-crystal structures of PARP14 with certain hit compounds revealed that the inhibitors bind to the NAD+-binding site. Finally, we confirmed that the hit compounds interacted with intracellular PARP14 by a cell-based protein stabilization assay. Thus, we successfully identified primary candidate compounds for further investigation.

Keywords: auto ribosylation; detecting auto; hit compounds; parp14

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.