Acupuncture therapy is performed by applying the needle insertion at discrete cutaneous locations and used for the treatments of diverse symptoms and disorders. In order to elucidate mechanistic basis on… Click to show full abstract
Acupuncture therapy is performed by applying the needle insertion at discrete cutaneous locations and used for the treatments of diverse symptoms and disorders. In order to elucidate mechanistic basis on how acupuncture stimulation (AS) produces therapeutic effects, it is primarily important to understand tissue responses locally at the acupuncture site (acupoint). Here, we investigated integrin protein as molecular target responding to and integrating AS. Signals of α6 and β1 integrins were clearly induced at zusanli acupoint 24 h after AS in areas of nuclear clusters around the needle track. Induction levels of integrin were largely reduced by needle insertion at non-acupuncture point or without needle rotation. Phospho-Erk1/2 was initially decreased below the basal level after AS but increased 24 h later. Induction pattern of phospho-Erk1/2 was as similar as that of α6 integrin in its selectivity to needling procedure and tissue distribution. We further found that mRNA expression of P2X3 purinergic receptor was upregulated in the dorsal root ganglion (DRG) after AS, but decreased by the inhibition of Erk1/2 activity at the acupuncture area. Moreover, AS-mediated integrin activation was required for Erk1/2 activation at the acupuncture site and regulation of pain sensitivity in the hind paw. The present results provide a new evidence on acupuncture-specific tissue response in terms of integrin induction, and further suggest that integrin activation may be involved in transmitting mechanosensory signals from the acupoint to afferent nerve fiber.
               
Click one of the above tabs to view related content.