Bone morphogenetic protein 9 (BMP9), a member of the TGF-β superfamily, is considered a regulator of glucose homeostasis as well as a neuronal differentiation factor. BMP9 induces phosphorylation of Smad1/5… Click to show full abstract
Bone morphogenetic protein 9 (BMP9), a member of the TGF-β superfamily, is considered a regulator of glucose homeostasis as well as a neuronal differentiation factor. BMP9 induces phosphorylation of Smad1/5 through activin receptor-like kinase 1 and 2 (ALK1 and ALK2). Recently, many studies have shown that BMP9 contributes to tumorigenesis, and aberrant ALK2 expression is involved in many diseases. To investigate the role of BMP9-ALK2 signaling in cancer cells, we used TF-1 cells that require granulocyte-macrophage colony-stimulating factor (GM-CSF) for cell proliferation. BMP9 promoted the proliferation of TF-1 cells in media lacking GM-CSF. TF-1 cells overexpressing ALK2 resulted in the autophosphorylation of Smad1/5, leading to consequent increase in cell growth. Through high-throughput screening (HTS), we found two ALK2-specific inhibitors, KRC203 and KRC360, with IC50 values of 0.9 nM and 0.3 nM. These compounds were more potent and specific for the inhibition of ALK2 when compared to LDN193189. In cell-based assays, these compounds effectively inhibited the proliferation and migration of cancer cells induced by ALK2 and BMP9. Therefore, we propose that our compounds are promising candidates for the treatment of cancer or diseases with abnormal ALK2 or BMP9 signaling.
               
Click one of the above tabs to view related content.