LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane.

Photo by cdc from unsplash

Leucyl-tRNA synthetase (LRS) plays major roles in providing leucine-tRNA and activating mechanistic target of rapamycin complex 1 (mTORC1) through intracellular leucine sensing. mTORC1 activated by amino acids affects the influence… Click to show full abstract

Leucyl-tRNA synthetase (LRS) plays major roles in providing leucine-tRNA and activating mechanistic target of rapamycin complex 1 (mTORC1) through intracellular leucine sensing. mTORC1 activated by amino acids affects the influence on physiology functions including cell proliferation, protein synthesis and autophagy in various organisms. Biochemical results demonstrating leucine sensing have been published, but visual results are lacking. Therefore, we observed the location of LRS with and without leucine using stimulated emission depletion (STED) microscopy one of the super-resolution microscopy and transmission electron microscopy (TEM). This revealed that LRS was translocated to the lysosome on addition of leucine. The translocation was inhibited by treatment with compound BC-LI-0186, disrupting the interaction between RagD and LRS. Immuno-TEM revealed a clear decrease in LRS translocation to the lysosome on addition of the inhibitor. This direct visualization of leucine sensing and LRS translocation to the lysosome was related to mTORC1 activation. To study the relationship between mTORC1 activation and LRS translocation, we monitored the change in autophagy for each condition using TEM and CLSM. The results showed a decrease in autophagy on addition of leucine, demonstrating crosstalk between leucine sensing, LRS translocation, RagD interaction, and mTORC1 activation.

Keywords: microscopy; leucine sensing; leucyl trna; trna synthetase; translocation; leucine

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.