Procaspase-2 phosphorylation at several residues prevents its activation and blocks apoptosis. This process involves procaspase-2 phosphorylation at S164 and its binding to the scaffolding protein 14-3-3. However, bioinformatics analysis has… Click to show full abstract
Procaspase-2 phosphorylation at several residues prevents its activation and blocks apoptosis. This process involves procaspase-2 phosphorylation at S164 and its binding to the scaffolding protein 14-3-3. However, bioinformatics analysis has suggested that a second phosphoserine-containing motif may also be required for 14-3-3 binding. In this study, we show that human procaspase-2 interaction with 14-3-3 is governed by phosphorylation at both S139 and S164. Using biochemical and biophysical approaches, we show that doubly phosphorylated procaspase-2 and 14-3-3 form an equimolar complex with a dissociation constant in the nanomolar range. Furthermore, our data indicate that other regions of procaspase-2, in addition to phosphorylation motifs, may be involved in the interaction with 14-3-3.
               
Click one of the above tabs to view related content.