LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macrophage recruitment, but not interleukin 1 beta activation, enhances noise-induced hearing damage.

Photo from wikipedia

It has been suggested that macrophages or inflammatory monocytes participate in the pathology of noise-induced hearing loss (NIHL), but it is unclear how extensively these cells contribute to the development… Click to show full abstract

It has been suggested that macrophages or inflammatory monocytes participate in the pathology of noise-induced hearing loss (NIHL), but it is unclear how extensively these cells contribute to the development of temporary and/or permanent NIHL. To address this question, we used clodronate liposomes to deplete macrophages and monocytes. After clodronate liposome injection, mice were exposed to 4-kHz octave band noise at 121 dB for 4 h. Compared to vehicle-injected controls, clodronate-treated mice exhibited significantly reduced permanent threshold shifts at 4 and 8 kHz and significantly smaller outer hair cell losses in the lower-apical cochlear turn. Following noise exposure, the stria vascularis had significantly more cells expressing the macrophage-specific protein F4/80, and this effect was significantly suppressed by clodronate treatment. These F4/80-positive cells expressed interleukin 1 beta (IL-1β), which noise exposure activated. However, IL-1β deficient mice did not exhibit significant resistance to intense noise when compared to wild-type mice. These findings suggest that macrophages that enter the cochlea after noise exposure are involved in NIHL, whereas IL-1β inhibition does not reverse this cochlear damage. Therefore, macrophages may be a promising therapeutic target in human sensorineural hearing losses such as NIHL.

Keywords: induced hearing; interleukin beta; noise; damage; noise induced

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.