LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system.

Photo by scentspiracy from unsplash

TRPA1 of insects and several tetrapod vertebrates except for those of rodents have been reported to be activated by noxious chemicals and also by high temperature with a relatively clear… Click to show full abstract

TRPA1 of insects and several tetrapod vertebrates except for those of rodents have been reported to be activated by noxious chemicals and also by high temperature with a relatively clear threshold. We previously analyzed the characteristics of two TRPA1 paralogs of zebrafish (zTRPA1a, b) and demonstrated that zTRPA1a is specialized for chemical sensing while zTRPA1b responds to thermal stimulations, that zTRPA1b responds to both cold and heat stimuli, and that heat stimulation gradually activates zTRPA1b without a clear threshold. In the medaka genome, a single TRPA1 (olTRPA1) gene is present. To examine if functional properties of olTRPA1 are similar to TRPA1 of land animals or either of zTRPA1a or zTRPA1b, we isolated a TRPA1 cDNA from medaka and performed functional analyses. OlTRPA1 showed a sensitivity to four noxious chemicals (allyl isothiocyanate, caffeine, carvacrol, methyl anthranilate). We observed that cold stimulation does not activate olTRPA1, but heat stimulation gradually activates olTRPA1 with an unclear threshold. Results suggested that a single TRPA1 functions as a chemical and thermal sensor in medaka, and that a gradual heat-activation without clear threshold might be a common feature for TRPA1 of fish living in water.

Keywords: trpa1; medaka; chemical thermal; heat; clear threshold

Journal Title: Biochemical and biophysical research communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.