LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulation of hyaluronan polymer size regulates proliferation of perimysial fibroblasts in thyroid eye disease.

Photo from wikipedia

In active thyroid eye disease (TED), the extraocular muscles feature excessive hyaluronan (HA) accumulation and increased fibroblast proliferation. To investigate the effects of HA on proliferation, we cultured perimysial fibroblasts… Click to show full abstract

In active thyroid eye disease (TED), the extraocular muscles feature excessive hyaluronan (HA) accumulation and increased fibroblast proliferation. To investigate the effects of HA on proliferation, we cultured perimysial fibroblasts from extraocular muscles of active TED patients, and adopted IGF-1 and PH20 as modulators for HA concentration and HA polymer size. Based on the results, IGF-1 increased HA concentration, promoted high molecular weight HA (HMW-HA) proportion and stimulated fibroblast proliferation. Hyaluronidase PH20 decreased HA concentration, but caused HMW-HA accumulation and exaggerating proliferation as well. Combined treatment with both reagents resulted in retention of low molecular weight HA (LMW-HA), and suppressed fibroblast proliferation. Pearson correlation demonstrated no significance between HA concentration and proliferation. Mitogenic investigation unveiled the stimulatory effects of HMW-HA via membrane depolarization and inhibitive effects of LMW-HA via membrane hyperpolarization. Our findings offer insights into the essential role of HA molecular weight during TED pathogenesis.

Keywords: thyroid eye; proliferation; polymer size; perimysial fibroblasts; eye disease

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.