LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuronal calcium channel α1 subunit interacts with AMPA receptor, increasing its cell surface localisation.

Photo by shapelined from unsplash

Voltage-activated Ca2+ channels (Cav) play critical roles in excitable cells including neurons. Unlike the well-defined roles of Cav2 for pre-synaptic neurotransmission, the post-synaptic function of Cav2 is unclear. Based on… Click to show full abstract

Voltage-activated Ca2+ channels (Cav) play critical roles in excitable cells including neurons. Unlike the well-defined roles of Cav2 for pre-synaptic neurotransmission, the post-synaptic function of Cav2 is unclear. Based on our previous study demonstrating the postsynaptic association of the Cav2 with the AMPA receptor (AMPA-R), in this study we sought to further analyse the Cav2-AMPA-R association. We used a step-by-step dissociation of partially purified native Cav2-AMPA-R complexes and co-immunoprecipitation of the Cav2-AMPA-R complexes expressed in HEK293T cells to demonstrate that the main subunit of Cav, α1, formed a complex with the AMPA-R without the auxiliary subunits β, α2δ, γ2/3. The α1 subunit increased the cell-surface localisation of the AMPA-R, which could be a post-synaptic function of the Cav2.

Keywords: cav2 ampa; ampa; surface localisation; ampa receptor; cell surface; cav2

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.