LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interaction of MreB-derived antimicrobial peptides with membranes.

Photo by bermixstudio from unsplash

Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides… Click to show full abstract

Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB1-9 and its N-terminal acetylated analog, Ac-WMreB1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them.

Keywords: peptides membranes; interaction mreb; mreb derived; derived antimicrobial; antimicrobial peptides; membrane

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.