LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-κB pathway.

Photo from wikipedia

The emergence of chemoresistance greatly increases the recurrence risk for non-muscle invasive bladder cancer (NMIBC) patients, which is still a big concern of clinicians. Understanding the mechanisms of drug resistance… Click to show full abstract

The emergence of chemoresistance greatly increases the recurrence risk for non-muscle invasive bladder cancer (NMIBC) patients, which is still a big concern of clinicians. Understanding the mechanisms of drug resistance is of great significance for preventing and reversing it. We showed here that CXC motif chemokine ligand 5 (CXCL5) was overexpressed in mitomycin C-resistant bladder cancer cell line M-RT4. Meanwhile, parental RT4 cell treated with recombinant human CXCL5 (rhCXCL5) reduced its sensitivity to mitomycin C. Conversely, knockdown CXCL5 sensitized M-RT4 cell. We further investigated the molecular mechanisms finding that epithelial mesenchymal transition (EMT) and NF-κB pathway were activated in M-RT4 cell, which could be attenuated by knockdown CXCL5. All these data indicated that CXCL5 may promote mitomycin resistance by activating EMT and NF-κB pathway. Thus, our study identifies CXCL5 as a novel chemoresistance-related marker in NMIBC, thereby providing new strategies to overcome chemoresistance for NMIBC patients.

Keywords: cxcl5; bladder cancer; resistance; emt pathway

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.