LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exosomal proteome analysis of human plasma to monitor sepsis progression.

Exosomes are cell-derived vesicles containing RNA, lipid, and protein, which act in body immune response, intercellular signaling and some other important biological processes. Exosomes have been extensively studied in the… Click to show full abstract

Exosomes are cell-derived vesicles containing RNA, lipid, and protein, which act in body immune response, intercellular signaling and some other important biological processes. Exosomes have been extensively studied in the past several years on their disease related mechanisms and potential roles to monitor disease progression as biomarkers. Compared with analyzing exosome RNA, comprehensive proteome profiling of exosomes in clinical samples (e.g. blood) are highly demanded but limited mainly due to lack of a reproducible method for efficient exosome extraction. In this study, we evaluated and optimized an exosome preparation approach using one-step ultracentrifugation through an Optiprep™ cushion. Exosomes prepared via this method and analyzed by mass spectrometry using Q-Exactive plus, has led to reproducible identification and quantification of 200 + proteins from human plasma samples of as little as 300 μL. Therefore, such a straightforward exosome extract method has enable us to deeply profile exosome proteomes from human blood at a scale of clinical studies. As a proof of principal, we practiced this approach in analyzing the exosome proteomic profiles of blood samples collected from a sepsis patient during six time points after diagnosis. Among the 238 proteins identified and quantified across the 6 samples, protein SPTLC3 involved in the sphingolipid metabolism, shows a negative correlation (p = 0.02, correlation coefficient = -0.984) with disease progression indicated by body temperature (BD) and C-reactive protein (CRP). Therefore, SPTLC3 could be an interesting target for future study on molecular mechanism of sepsis development, as well as potential classifier to monitor clinical progression of sepsis.

Keywords: sepsis; monitor; human plasma; exosomal proteome; progression

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.