LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of glucosylceramide synthesis by Golgi-localized phosphoinositide.

Photo by robbie36 from unsplash

Phosphoinositides mediate a large number of signaling processes in mammalian cells. Here, we report that phophatidylinositol-4-phosphate (PtdIns(4)P) downregulates the cellular glucosylceramide (GlcCer) level by inhibiting the interaction between GlcCer synthase… Click to show full abstract

Phosphoinositides mediate a large number of signaling processes in mammalian cells. Here, we report that phophatidylinositol-4-phosphate (PtdIns(4)P) downregulates the cellular glucosylceramide (GlcCer) level by inhibiting the interaction between GlcCer synthase (UGCG) and UDP-glucose in the Golgi apparatus. In this study, we used two PH domain probes to bind phosphoinositides; one derived from FAPP1 for targeting to the Golgi PtdIns(4)P and the other from PLC δ for targeting to the plasma membrane PtdIns(4,5)P2. The levels of GlcCer and lactosylceramide, but not of sphingomyelin (SM), were increased following expression of the FAPP1 PH domain in cells, accompanied by an increase in UGCG activity. However, no elevated GlcCer level was observed after expression of the PLC δ PH domain. PtdIns(4)P inhibited UGCG activity, but not SMS activity, in a concentration-dependent manner, and UGCG activity was restored by the addition of UDP-glucose in the reaction mixture. These results indicate that PtdIns(4)P inhibits UGCG activity by competing with UDP-glucose. We conclude that the increase in UGCG activity due to the expression of the FAPP1 PH domain was caused by an attenuation of the inhibitory effect of PtdIns(4)P on UGCG. This study provides new insights into the regulation of GlcCer synthesis by PtdIns(4)P in the Golgi apparatus.

Keywords: ugcg activity; synthesis; golgi; activity; domain; regulation

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.