LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of betulinic acid and its ionic derivatives on M-MuLV replication.

Photo by sharonmccutcheon from unsplash

Murine leukemia virus (MuLV) is a retrovirus known causing leukemia and neurological disorders in mice, and its viral life cycle and pathogenesis have been investigated extensively over the past decades.… Click to show full abstract

Murine leukemia virus (MuLV) is a retrovirus known causing leukemia and neurological disorders in mice, and its viral life cycle and pathogenesis have been investigated extensively over the past decades. As a natural antiviral agent, betulinic acid is a pentacyclic triterpenoid that can be found in the bark of several species of plants (particularly the white birch). One of the hurdles for betulinic acid to release its antiviral potency is its poor water solubility. In this study, we synthesized more water-soluble ionic derivatives of betulinic acid, and examined their activities against Moloney MuLV (M-MuLV). The mouse fibroblast cells stably infected with M-MuLV, 43D cells, were treated with various doses of betulinic acids and its derivatives, and the viral structural protein Gag in cells and media were detected by western blots. Two ionic derivatives containing the benzalkonium cation were found to inhibit the virus production into media and decreased Gag in cells. However, a cell proliferation assay showed that the benzalkonium cation inhibited the growth of 43D cells, suggesting that our ionic derivatives limited virus production through the inhibition of metabolism in 43D cells. Interestingly, all of these betulinic acid compounds exhibited a minimum impact on the processing and release of Gag from 43D cells, which outlines the differences of viral maturation between MuLV and human immunodeficiency virus.

Keywords: 43d cells; betulinic acid; ionic derivatives; acid ionic; acid; effect betulinic

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.