LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect.

Photo by art_almighty from unsplash

Hexokinase-2 (HK2), the initial as well as the rate-limiting step in glycolysis, is overexpressed in many human cancers, and correlates with poor clinical outcomes. Aerobic glycolysis is a hallmark of… Click to show full abstract

Hexokinase-2 (HK2), the initial as well as the rate-limiting step in glycolysis, is overexpressed in many human cancers, and correlates with poor clinical outcomes. Aerobic glycolysis is a hallmark of cancer, and drugs targeting its enzymes, including HK2, are being developed. However, the mechanisms of HK2 inhibition and the physiological significance of the HK2 inhibitors in cancer cells are rarely reported. Here, we show that microRNA-216a-5p (miR-216a-5p) inhibits HK2 expression by directly targeting its 3'-UTR in uveal melanoma cells. Through inhibition of HK2, miR-216a-5p dampens glycolysis by reducing HK activity, glucose uptake, lactate production, ATP generation, extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in uveal melanoma cells. Importantly, glycolysis regulated by miR-216a-5p is critical for its regulating uveal melanoma tumor growth both in vitro and in vivo. miR-216a-5p expression is negatively correlated with HK2 expression and predicts better outcome in uveal melanoma patients. Our findings provide clues regarding the role of miR-216a-5p as a tumor suppressor in uveal melanoma through the inhibition of HK2. Targeting HK2 through miR-216a-5p could be a promising therapeutic strategy in uveal melanoma.

Keywords: uveal melanoma; mir 216a; hexokinase; hk2

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.