LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene-based materials: The missing piece in nanomedicine?

Photo by jjames25 from unsplash

Nanomedicine utilizes biocompatible nanomaterials for therapeutic as well as imaging purposes for the treatment of various diseases including cancer, neurological disorders and wound infections. Graphene and its modified nanostructures have… Click to show full abstract

Nanomedicine utilizes biocompatible nanomaterials for therapeutic as well as imaging purposes for the treatment of various diseases including cancer, neurological disorders and wound infections. Graphene and its modified nanostructures have attracted much attention in recent years in nanomedicine owing to their scalable and cost effective preparation and physiochemical features (high specific surface area, ease in conjugation to peptides/antibodies/proteins and biocompatibility). However, the limited fabrication, functionalization, and in vivo functionalities available in literature indicate inconsistencies regarding the factors affecting in vivo metabolisms, biodistribution as well as toxicity patterns of graphene. It appears that redox signaling pathways, and their proper use to target specific diseases and to improve biocompatibility and interplay between size and optical properties are key determinants to investigate the metabolic fate of such materials. This featured letter provides key insights into the significance and multifunctional roles of redox regulated species in graphene-based materials which can be used to closely mimic therapeutic functions, navigating new paths to nanomedicine and synthetic biology. Furthermore, this letter focuses on the missing functionalities and challenges in using graphene-based materials as both nano-carriers and nano-drugs in various biomedical sectors which might be favorable for multiple payloads and drug targeting in upcoming years.

Keywords: graphene based; missing piece; piece nanomedicine; materials missing; based materials

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.