LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

β1,6 GlcNAc branches-modified protein tyrosine phosphatase Mu attenuates its tyrosine phosphatase activity and promotes glioma cell migration through PLCγ-PKC pathways.

Photo from wikipedia

The metastatic potential of malignant tumor has been shown to be correlated with the increased expression of tri- and tetra-antennary β1,6-N-acetylglucosamine (β1,6-GlcNAc) N-glycans. In this study, We found that GnT-V… Click to show full abstract

The metastatic potential of malignant tumor has been shown to be correlated with the increased expression of tri- and tetra-antennary β1,6-N-acetylglucosamine (β1,6-GlcNAc) N-glycans. In this study, We found that GnT-V expression was negatively correlated with receptor protein tyrosine phosphatase type μ(RPTPμ) in human glioma tissues. To study whether RPTPμ is a novel substance of GnT-V which further affect RPTPμ's downstream dephosphorylation function, we preform lentiviral infection with GnT-V gene to construct stably transfected GnT-V glial cell lines. We found RPTPμ undergone severer cleavage in GnT-V transfected glioma cells compare to Mock cells. RPTPμ intracellular domain fragments increased while β1,6-GlcNAc-branched N-glycans increased, in consistent with the decrease of RPTPμ's catalytic activity. The results showed that abnormal glycosylation could decrease the phosphorylation activity of PTP μ, and affect PLCγ-PKC pathways. Both protease inhibitor Furin and N-glycan biosynthesis inhibitor swainsonine could decrease cell mobility in GnT-V-U87 transfectants and other glioma cell lines. All results above suggest increased post-translational modification of RPTPμ N-glycans by GnT-V attenuates its tyrosine phosphatase activity and promotes glioma cell migration through PLCγ-PKC pathways, and that the β1,6-GlcNAc-branched N-glycans of RPTPμ play a crucial role in glioma invasivity.

Keywords: plc pkc; phosphatase; tyrosine phosphatase; pkc pathways; cell; activity

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.