LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EpsM from Bacillus subtilis 168 has UDP-2,4,6-trideoxy-2-acetamido-4-amino glucose acetyltransferase activity in vitro.

Photo by louishansel from unsplash

Bacillus subtilis 168 EpsM (UniProt id P71063) has been electronically annotated as putative acetyltransferase in the UniProt database. The gene epsM was cloned and overexpressed in E. coli with an N-terminal… Click to show full abstract

Bacillus subtilis 168 EpsM (UniProt id P71063) has been electronically annotated as putative acetyltransferase in the UniProt database. The gene epsM was cloned and overexpressed in E. coli with an N-terminal GST tag. The purified fusion protein was shown by absorption spectroscopy, autoradiography and reverse phase HPLC to catalyse the conversion of UDP-2,4,6-trideoxy-2-acetamido-4-amino glucose to UDP-2,4,6-trideoxy-2,4-diacetamido glucose, commonly known as N,N'-diacetylbacillosamine, using acetyl coenzyme A as the donor substrate. His146 was shown by site-directed mutagenesis to be essential for acetyltransferase activity. It is hypothesized that EpsC (NAD+ dependent UDP GlcNAc 4,6-dehydratase), EpsN (PLP dependent aminotransferase) and EpsM, all of which are part of the eps operon, are involved in the biosynthesis of N,N'-diacetylbacillosamine.

Keywords: trideoxy acetamido; acetamido amino; acetyltransferase; subtilis 168; bacillus subtilis; udp trideoxy

Journal Title: Biochemical and biophysical research communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.