Cervical cancer is reported as one of the most lethal types of cancer among female. However, extensive studies of the molecular mechanisms that regulate the progression of cervical cancer are… Click to show full abstract
Cervical cancer is reported as one of the most lethal types of cancer among female. However, extensive studies of the molecular mechanisms that regulate the progression of cervical cancer are still required. B-cell associated protein (BAP)-31 is a 28-kDa integral membrane protein in the endoplasmic reticulum (ER), playing essential role in modulating various physiological processes. The present study indicated that BAP31 was a novel gene associated with cervical cancer development. Here, we demonstrated that BAP31 was significantly increased in human cervical cancer specimens, which was positively correlated to histological grade of the cancer. BAP31 knockdown suppressed cell proliferation, clonogenic ability and metastasis-associated traits in vitro, as well as carcinogenesis and pulmonary metastasis in vivo. Further studies indicated that the expression levels of transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, MMP-9, Rho-associated protein kinase 1 (ROCK1), α-smooth muscle actin (α-SMA), Vimentin and N-cadherin were markedly reduced by BAP31 knockdown in cervical cancer cells. In addition, intrinsic and extrinsic apoptosis was significantly induced in BAP31 knockdown cells, as evidenced by the increased expression of cleaved Caspase-8/-9/-3 and poly (ADP-ribose) polymerases (PARP). Notably, suppressing the activities of Caspase-8/-9 and -3 obviously diminished BAP31 silence-triggered apoptosis. Together, these findings highlighted an essential role for BAP31 in the modulation of tumorigenesis and metastatic potential of cervical cancer, and demonstrated a promising application of BAP31 in cancer prevention.
               
Click one of the above tabs to view related content.