LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role and mechanism of miR-4778-3p and its targets NR2C2 and Med19 in cervical cancer radioresistance.

Photo by nci from unsplash

The aim of this study was to investigate the effect of miR-4778-3p on the radiosensitivity of cervical cancer cells and to elucidate the underlying mechanism. Tissue samples were collected from… Click to show full abstract

The aim of this study was to investigate the effect of miR-4778-3p on the radiosensitivity of cervical cancer cells and to elucidate the underlying mechanism. Tissue samples were collected from eight patients with cervical cancer prior to chemoradiotherapy. MicroRNA chip analyses, RT-PCR, gene transfection, CCK8, wound healing and Transwell assays, colony-forming assay, western blot, and the Dual-Luciferase Reporter Assay System were used to evaluate the role of miR-4778-3p in cervical cancer radiosensitivity and its relationships with target molecules NR2C2 and Med19. Thirty-two differentially expressed miRNA molecules (fold-change > 2; p < 0.05) associated with cervical cancer radioresistance were identified. The expression of miR-4778-3p was significantly lower in recurrent or metastatic patients than in control subjects. In vitro studies using radioresistant HeLa and SiHa cervical cancer cell lines showed that miR-4778-3p upregulation significantly inhibited cell proliferation, invasiveness, and migration after irradiation. There was also a significant increase in apoptosis and a significant decrease in the proportion of cells at the G2/M phase. Further, miR-4778-3p upregulation led to increased expression of apoptosis-related molecules, such as Bax, Caspase-3, Caspase-8, and Caspase-9. Reporter gene assays showed that miR-4778-3p bound specifically to NR2C2 and Med19 and negatively regulated their expression. Thus, miR-4778-3p reduces the vitality, proliferation, and migration of radioresistant cervical cancer cells and may regulate the radiosensitivity of cervical cancer by targeting and regulating NR2C2 and Med19 expression.

Keywords: nr2c2 med19; cancer radioresistance; cervical cancer; mir 4778

Journal Title: Biochemical and biophysical research communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.