LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hepatocellular iNOS protects liver from NASH through Nrf2-dependent activation of HO-1.

Photo by bermixstudio from unsplash

Multiple molecular events are involved in non-alcoholic steatohepatitis (NASH). There is no consensus on the role of inducible nitric oxide synthase (iNOS) in the progression of NASH. The present study… Click to show full abstract

Multiple molecular events are involved in non-alcoholic steatohepatitis (NASH). There is no consensus on the role of inducible nitric oxide synthase (iNOS) in the progression of NASH. The present study therefore investigated the role of iNOS in NASH pathogenesis using bone marrow-transplanted iNOS chimeric mice under high-fat diet (HFD) conditions. The chimeric mice were fed a HFD for 16 wk, and primary hepatocytes were stimulated with oleic acid (OA). The molecular mechanisms underlying the role of iNOS in NASH were investigated. Marked hepatic steatosis and injury observed in the HFD mice and OA-stimulated hepatocytes were reduced by hepatocyte-derived iNOS. Mechanistically, iNOS upregulated heme oxygenase 1 (HO-1) by augmenting nuclear factor erythroid 2-related factor 2 (Nrf-2) binding to the HO-1 gene promoter. In conclusion, hepatocyte-derived iNOS may play a protective role against the progression of NASH by upregulating HO-1 through Nrf-2. Upregulation of hepatocellular iNOS may represent a potentially new therapeutic paradigm to combat NASH.

Keywords: protects liver; liver nash; nash nrf2; inos protects; role; hepatocellular inos

Journal Title: Biochemical and biophysical research communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.