LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A knock-in mouse model of Pendred syndrome with Slc26a4 L236P mutation.

Photo by thinkmagically from unsplash

SLC26A4 gene mutations lead to Pendred syndrome and non-syndromic hearing loss (DFNB4). The mouse model is well used to study the pathology of Pendred syndrome, however, mice with different Slc26a4… Click to show full abstract

SLC26A4 gene mutations lead to Pendred syndrome and non-syndromic hearing loss (DFNB4). The mouse model is well used to study the pathology of Pendred syndrome, however, mice with different Slc26a4 mutations exhibit different phenotypes, and these mice have severe deafness and inner ear malformations that are not imitated less severely Human phenotype. In this study, we generated a knock-in mouse model of Pendred syndrome with Slc26a4 L236P mutation to mimic the most common mutation found in human. Some L236P mice were observed to have significant vestibular dysfunction including torticollis and circling, the giant otoconia and destruction of the otoconial membrane was observed in L236P mice. Unlike other profoundly deafness in Slc26a4 mouse model, L236P mice present mild to profound hearing loss, consistent with the hearing threshold, inner ear hair cells also lost from slight to significant. Together, these data demonstrate that the L236P mouse phenotype is more similar to the human phenotype and should be used as a tool for further research into the human Pendred syndrome.

Keywords: pendred syndrome; slc26a4; mouse model; mouse; l236p

Journal Title: Biochemical and biophysical research communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.