Ischemic stroke is one of the leading causes of morbidity and mortality among human worldwide. Unfortunately, cerebral I/R still lacks effective therapeutic targets and strategies. In the study, we found… Click to show full abstract
Ischemic stroke is one of the leading causes of morbidity and mortality among human worldwide. Unfortunately, cerebral I/R still lacks effective therapeutic targets and strategies. In the study, we found that general control nonderepressible 2 (GCN2) expression was increased following ischemia in the ischemic penumbra in vivo and in vitro. GCN2 suppression using its significant inhibitor, GCN2iB, exhibited a protective role in cerebral I/R injury in mice, as evidenced by the improved neurological deficits and function. GCN2 inhibition with either GCN2iB or genetic knockdown led to significant reduction of pro-apoptotic protein expression, endoplasmic reticulum stress (ERS)-related protein and oxidative stress both in I/R-induced cerebral injury and oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in N2a cells. OGD/R-triggered apoptosis and ERS were significantly depended on oxidative stress in vitro. In addition, Forkhead box O 3a (FoxO3a), involved in the reactive oxygen species (ROS) production, was increased during OGD/R stimulation-regulated apoptosis and ERS, which could be abrogated by GCN2 suppression. Consistently, FoxO3a-regulated generation of ROS was markedly ameliorated upon GCN2 suppression with GCN2iB. Thereby, our findings indicated that GCN2 suppression alleviated apoptosis and ERS in cerebral ischemia through reducing FoxO3a-dependent ROS production, illustrating that GCN2 could be a promising target for the therapeutic interventions in cerebral ischemic stroke.
               
Click one of the above tabs to view related content.