Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined… Click to show full abstract
Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT in vivo, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI in vitro. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE-/-) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE-/- mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.
               
Click one of the above tabs to view related content.