LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CPT1a downregulation protects against cholesterol-induced fibrosis in tubular epithelial cells by downregulating TGFβ-1 and inflammasome.

Photo by nci from unsplash

BACKGROUND Dyslipidemia causes renal damage; however, the detailed molecular mechanism has not been clarified. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty… Click to show full abstract

BACKGROUND Dyslipidemia causes renal damage; however, the detailed molecular mechanism has not been clarified. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. In the present study, we investigated whether the accumulation of lipids induced by 7-ketocholesterol (7-KC) in tubular epithelial cells produce a fibrotic and inflammatory response through CPT1a. METHODS Using an epithelial cell line, NRK-52E, we determine if intracellular accumulation of 7-KC modulates profibrotic and inflammatory events through CPT1a gene expression. In addition, the direct effects of CPT1a genetic modification has been studied. RESULTS Our results revealed that high levels of 7-KC induce increased expression of CPT1a, TGF-β1, α- SMA and NLRP3 that was correlated with lipid content. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC laden cells and decreased the expression of CPT1a, TGF-β1, α- SMA and NLRP3. Furthermore, CPT1a Knockdown and C75 pre-treatment increased lipid content but decreased TGF-β1, α- SMA and NLRP3. CONCLUSIONS Our findings reveal that the profibrotic effect of 7-KC on renal epithelial cells are mediated by CPT1a overexpression, which acts on TGF-β1, α-SMA and NLRP3. Thus, CPT1a downregulation protects against 7-KC-induced fibrosis in tubular epithelial cells by downregulating TGF-β1, α- SMA and NLRP3.

Keywords: cpt1a downregulation; sma nlrp3; epithelial cells; cpt1a; tubular epithelial; tgf sma

Journal Title: Biochemical and biophysical research communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.