Elevated plasma triglyceride (TG) levels are associated with higher risk of atherosclerotic cardiovascular disease. One way to reduce plasma TG is to increase the activity of lipoprotein lipase (LPL), the… Click to show full abstract
Elevated plasma triglyceride (TG) levels are associated with higher risk of atherosclerotic cardiovascular disease. One way to reduce plasma TG is to increase the activity of lipoprotein lipase (LPL), the rate limiting enzyme in plasma TG metabolism. An apolipoprotein (apo) C-II mimetic peptide (18A-CII-a) has been recently developed that stimulated LPL activity in vitro and decreased plasma TG concentration in animal models for hypertriglyceridemia. Since this peptide can serve as a new therapeutic approach for treatment of hypertriglyceridemia, we investigated how 18A-CII-a peptide influences LPL activity in human plasma. We used recently described isothermal titration calorimetry based approach to assess the peptide, which enables the analysis in nearly undiluted human plasma. The 18A-CII-a peptide was 3.5-fold more efficient in stimulating LPL activity than full-length apoC-II in plasma sample from normolipidemic individual. Furthermore, 18A-CII-a also increased LPL activity in hypertriglyceridemic plasma samples. Unlike apoC-II, high concentrations of the 18A-CII-a peptide did not inhibit LPL activity. The increase in LPL activity after addition of 18A-CII-a or apoC-II to plasma was due to the increase of the amount of available substrate for LPL. Measurements with isolated lipoproteins revealed that the relative activation effects of 18A-CII-a and apoC-II on LPL activity were greater in smaller size lipoprotein fractions, such as remnant lipoproteins, low-density lipoproteins and high-density lipoproteins. In summary, this report describes a novel mechanism of action for stimulation of LPL activity by apoC-II mimetic peptides.
               
Click one of the above tabs to view related content.