Cell adhesion between oligodendrocytes and neuronal axons is a critical step for myelination that enables the rapid propagation of action potential in the central nervous system. Here, we show that… Click to show full abstract
Cell adhesion between oligodendrocytes and neuronal axons is a critical step for myelination that enables the rapid propagation of action potential in the central nervous system. Here, we show that the transmembrane protein teneurin-4 plays a role in the cell adhesion required for the differentiation of oligodendrocytes. We found that teneurin-4 formed molecular complexes with all of the four teneurin family members and promoted cell-cell adhesion. Oligodendrocyte lineage cells attached to the recombinant extracellular domain of all the teneurins and formed well-branched cell processes. In an axon-mimicking nanofibers assay, nanofibers coated with the recombinant teneurin-4 extracellular domain increased the differentiation of oligodendrocytes. Our results show that teneurin-4 binds to all teneurins through their extracellular domain, which facilitates the oligodendrocyte-axon adhesion, and promotes oligodendrocyte differentiation via its homophilic interaction.
               
Click one of the above tabs to view related content.