LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PrP (122-139) is a covert mitochondrial targeting signal of prion protein and it specifically triggers the perinuclear clustering of mitochondria in neuronal culture cells.

Photo from wikipedia

In many neurodegenerative diseases, mitochondria are actively involved in the onset and/or progression of diseases because the energy depletion of the neuronal cells directly leads to the dysfunction and degeneration… Click to show full abstract

In many neurodegenerative diseases, mitochondria are actively involved in the onset and/or progression of diseases because the energy depletion of the neuronal cells directly leads to the dysfunction and degeneration of cells. In the case of prion diseases, mitochondrial involvement has been reported recently and evidence that prion protein (PrP) is localized in mitochondria is increasing. Despite these findings, the precise molecular mechanism by which PrP targets mitochondria remains unclear. PrP is a secretory protein and does not have a pre-sequence that targets the mitochondria, therefore, we thought that there was a covert signal in the amino acid sequence of PrP. To find the sequence, we constructed various GFP-fused PrP-truncations and colocalization with mitochondria was verified by live-cell imaging. Consequently, we found that 18 amino acids, PrP (122-139), are indispensable for the mitochondrial targeting of PrP. In addition, fluorescent microscopy observation revealed that PrP-localized mitochondria were accumulated at the perinuclear region in neuronal cells such as mouse neuroblastoma Neuro2a (N2a) and prion persistent infection N2a strain (ScN2a), anterograde movement of the mitochondria toward the cell membrane was completely inhibited because of the stacking of PrP on the outer membrane. The cristae formation of perinuclear accumulated mitochondria was disappeared indicating the reduced mitochondrial activity. Surprisingly, PrP-dependent mitochondrial perinuclear accumulation was specifically occurred on neuronal cells, whereas in epithelial HeLa cells and fibroblast COS-7 cells, no perinuclear accumulation observed even after the mitochondrial targeting of PrP.

Keywords: 122 139; prion; mitochondrial targeting; prion protein; prp 122

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.