LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LncRNA HOTTIP enhances human osteogenic BMSCs differentiation via interaction with WDR5 and activation of Wnt/β-catenin signalling pathway.

Photo from wikipedia

To uncover the underlying molecular mechanism of long non-coding RNA in the osteogenic differentiation process of bone marrow mesenchymal stem cells (BMSCs), HOXA transcript at the distal tip (HOTTIP) was… Click to show full abstract

To uncover the underlying molecular mechanism of long non-coding RNA in the osteogenic differentiation process of bone marrow mesenchymal stem cells (BMSCs), HOXA transcript at the distal tip (HOTTIP) was selected by using a lncRNA microarray assay. Results showed that HOTTIP was significantly upregulated during osteogenic differentiation of human BMSCs. Downregulation of HOTTIP by shRNA inhibited the osteogenic differentiation of BMSCs. Overexpression of HOTTIP by lentiviral vector promoted human BMSCs osteogenic differentiation by increasing the transcription of β-catenin. RIP assay and RNA pulldown assay confirmed the interaction between HOTTIP and WDR5, a transcription factor binding to the promoter of β-catenin. The interaction promoted the translocation of WDR5 into the nucleus and increased the transcription of β-catenin. Implanted HOTTIP-overexpressing BMSCs increased ectopic bone formation in nude mice. HOTTIP is a conservative long noncoding RNA that is essential for osteogenic differentiation of BMSC. HOTTIP enhances osteogenic differentiation via interaction with WDR5 and up-regulation of β-catenin gene expression, therefore activating Wnt/β-catenin signalling pathway.

Keywords: catenin; hottip; differentiation; osteogenic differentiation; interaction; bmscs

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.