LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential impacts of charcoal-stripped fetal bovine serum on c-Myc among distinct subtypes of breast cancer cell lines.

Photo from wikipedia

Charcoal-stripped fetal bovine serum (CS-FBS) is frequently used in studies on hormone-responsive cancers to provide hormone-free cell culture conditions. CS-FBS may influence the growth of cancer cells; however, the underlying… Click to show full abstract

Charcoal-stripped fetal bovine serum (CS-FBS) is frequently used in studies on hormone-responsive cancers to provide hormone-free cell culture conditions. CS-FBS may influence the growth of cancer cells; however, the underlying mechanisms remain unclear. In this study, we aimed to clarify the effects of CS-FBS on distinct subtypes of breast cancer cells. We found that the crucial oncoprotein c-Myc was significantly inhibited in estrogen receptor alpha (ER-α)-positive breast cancer cells when cultured in CS-FBS-supplemented medium, but it was not suppressed in ER-α-negative cells. The addition of 17β-estradiol (E2) to CS-FBS-supplemented medium rescued the CS-FBS-induced inhibition of c-Myc, while treatment with 5α-dihydrotestosterone (DHT) suppressed c-Myc expression. Our data demonstrated that CS-FBS may impede the growth of ER-α-positive breast cancer cells via c-Myc inhibition, and this was possibly due to the removal of estrogen. These results highlighted that the core drivers of c-Myc expression were subtype-specific depending on the distinct cell context and special caution should be exercised when using CS-FBS in studies of hormone-responsive cancer cells.

Keywords: stripped fetal; charcoal stripped; breast cancer; cancer cells; cancer; cell

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.