LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ATP antagonizes the crowding-induced destabilization of the human eye-lens protein γS-crystallin.

Photo from wikipedia

In lens, αβγ-crystallins accounting for ∼90% of ocular proteins with concentrations >400 mg/ml need to remain soluble for the whole life-span and their aggregation can lead to cataract. Mysteriously, despite being… Click to show full abstract

In lens, αβγ-crystallins accounting for ∼90% of ocular proteins with concentrations >400 mg/ml need to remain soluble for the whole life-span and their aggregation can lead to cataract. Mysteriously, despite being a metabolically-quiescent organ, lens maintains ATP concentrations of 3-7 mM. Very recently, ATP was proposed to hydrotropically prevent aggregation of crystallins but the mechanism remains unexplored. Here by NMR, DLS and DSF, we characterized the association, thermal stability and conformation of the 178-residue human γS-crystallin at concentrations from 2 to 100 mg/ml in the absence and in the presence of ATP. Results together reveal for the first time that ATP does antagonize the crowding-induced destabilization, although it has no significant binding to γS-crystallin as well as no alteration of its conformation. Therefore, ATP prevents aggregation in lens by a novel mechanism, thus rationalizing the fact that declining concentrations of ATP upon being aged is related to age-related cataractogenesis. To restore the normal concentrations of ATP in lens may represent a promising therapeutic strategy to treat aggregation-causing eye diseases.

Keywords: aggregation; crowding induced; crystallin; eye; induced destabilization

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.