LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SHIP interacts with adaptor protein Nck and restricts actin turnover in B cells.

Photo from wikipedia

SH2 domain-containing inositol 5'-phosphatase (SHIP) has critical functions in regulating signal transduction. In additional to its lipid phosphatase activity, SHIP engages in multiple protein-protein interactions, which can serve to localize… Click to show full abstract

SH2 domain-containing inositol 5'-phosphatase (SHIP) has critical functions in regulating signal transduction. In additional to its lipid phosphatase activity, SHIP engages in multiple protein-protein interactions, which can serve to localize either SHIP or its binding partners to a particular subcellular domain. Knock-out and knock-down studies have elucidated that SHIP negatively regulates the accumulation of F-actin in leukocytes, usually resulting in inhibition of actin dependent cellular activities such as spreading and migration. Here, we demonstrate that overexpression of SHIP inhibits B cell antigen receptor (BCR)-mediated cell spreading in murine and human B cell lines. B cell stimulation via the BCR or pervanadate induces an interaction between SHIP and Nck, an adaptor protein known to promote actin polymerization. Using a fluorescence recovery after photobleaching (FRAP) assay, we demonstrate that overexpression of SHIP slows F-actin dynamics in BCR-stimulated B cells and this can be overcome by co-overexpression of Nck. Our data supports a role for SHIP in limiting actin turnover and suggests it may do so in part by sequestering Nck.

Keywords: ship interacts; adaptor protein; interacts adaptor; ship; actin turnover

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.