Pancreatic adenocarcinoma is currently one of the leading causes of cancer-related death worldwide. The high rate of mortality in pancreatic cancer patients is due to the inability to detect early-stage… Click to show full abstract
Pancreatic adenocarcinoma is currently one of the leading causes of cancer-related death worldwide. The high rate of mortality in pancreatic cancer patients is due to the inability to detect early-stage disease and the disease being highly refractory to therapy. Gemcitabine has been the standard chemotherapy for advanced pancreatic cancer patients for the last two decades. However, gemcitabine resistance develops within a few weeks of treatment, and the associated mechanism remains poorly understood. Therefore, a novel therapeutic strategy is needed to overcome the limited clinical efficacy of gemcitabine in pancreatic adenocarcinoma. In this study, we demonstrated that ET-1/ETAR axis gene expression was upregulated in pancreatic cancer cells after treatment with gemcitabine. Additionally, ETAR expression was significantly higher in tumor tissues than in normal tissues, and patients with high ETAR expression had a notably worse overall survival rate than those with low ETAR expression. Furthermore, our results revealed that bosentan, an ETAR antagonist, enhanced the growth-inhibiting and proapoptotic effects of gemcitabine on pancreatic cancer cells. Thus, our findings indicate that blockade of the ET-1/ETAR axis signaling pathway promotes the antiproliferative effect of gemcitabine on pancreatic cancer. Therefore, combination of ETAR blockade and gemcitabine serves as an effective therapeutic approach to achieve clinical benefits in pancreatic adenocarcinoma patients.
               
Click one of the above tabs to view related content.