LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical stress promotes angiogenesis through fibroblast exosomes.

Photo from wikipedia

BACKGROUND Mechanical stress can induce multiple functional changes in vascular endothelial cells, including proliferation, differentiation, and migration. Furthermore, human fibroblasts are susceptible to external mechanical stress. In this work, we… Click to show full abstract

BACKGROUND Mechanical stress can induce multiple functional changes in vascular endothelial cells, including proliferation, differentiation, and migration. Furthermore, human fibroblasts are susceptible to external mechanical stress. In this work, we investigated whether mechanical stress can induce exosome secretion from fibroblasts to modulate angiogenesis. METHODS A CCK-8 cell proliferation assay was used to determine mechanical parameters. Then, exosomes from fibroblasts were isolated and characterized with regard to concentration and markers. We subsequently explored the effect of exosomes on proliferation, migration, and angiogenesis. Additionally, high-throughput sequencing was used to screen differentially expressed miRNAs in the mechanical stress-induced exosomes. RESULTS A static stretching of 15% significantly enhanced the cell viability of the fibroblasts (p < 0.05) and significantly induced the secretion of exosomes from the fibroblasts, which had a stronger internalization ability. Further experiments demonstrated that the presence of static stretching-induced exosomes significantly increased cell proliferation, migration, and angiogenesis by regulating the Erk1/2 signaling pathway. Additionally, 12 up-regulated and 12 down-regulated candidate miRNAs were discriminated in the static stretching-induced exosomes. CONCLUSION Our findings conclusively demonstrate that static stretching-derived exosomes from fibroblasts promote angiogenesis through differentially expressed miRNAs, providing novel insights into the molecular mechanism by which mechanical stress influences angiogenesis.

Keywords: mechanical stress; angiogenesis; exosomes fibroblasts; static stretching; stress; induced exosomes

Journal Title: Biochemical and biophysical research communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.