Temporal lobe epilepsy (TLE) has a low antiepileptic drug (AED) treatment response rate, and about 70% of patients eventually progress to refractory epilepsy. Perampanel (PER) is a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionic… Click to show full abstract
Temporal lobe epilepsy (TLE) has a low antiepileptic drug (AED) treatment response rate, and about 70% of patients eventually progress to refractory epilepsy. Perampanel (PER) is a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist, which is used clinically for the treatment of partially refractory epilepsy, but its mechanism of action is not completely clear. In this study, kainic acid (KA) was successfully used to induce TLE in 3-week-old C57BL/6 immature mice, and the effects of PER on the cognitive behavior of the epileptic mice were characterized using the Morris water maze paradigm. To determine the mechanism underlying the therapeutic effects of PER, the morphological evolution of the hippocampus and the expression of AP-1 and GluR1 were systematically evaluated. Compared to control TLE mice, escape latency was reduced and the number of target platform crossings was increased in the Morris water maze by treatment with PER. The therapeutic effects of PER were mediated mainly via inhibition of the expression of AP-1 and GluR1, as the TLE mice showed significantly improved learning and memory and decreased seizure frequency after treatment with PER.
               
Click one of the above tabs to view related content.