LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SBDS interacts with RNF2 and is degraded through RNF2-dependent ubiquitination.

Photo from wikipedia

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene that has a variety of clinical features, including exocrine pancreatic insufficiency and hematological… Click to show full abstract

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene that has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. The SBDS protein is considered to be involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. The multiple functions imply that certain proteins might associate with SBDS and affect its function. In this study, we identified Ring finger protein 2 (RNF2) as a candidate for the SBDS interactor by yeast two-hybrid screening. Moreover, we confirmed the interaction by GST-pull down assay using recombinant proteins and co-immunoprecipitation in HEK293T cells overexpressing RNF2. In addition, it is shown that RNF2 ubiquitinates SBDS and promotes its proteasomal degradation in HEK293T cells. These findings provide new insights into the regulation of SBDS.

Keywords: rnf2 degraded; degraded rnf2; rnf2; interacts rnf2; sbds interacts; sbds

Journal Title: Biochemical and biophysical research communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.