A recently developed integrative approach combining varied types of experimental data has been successfully applied to three-dimensional modelling of larger biomacromolecular complexes. Deuteration-assisted small-angle neutron scattering (SANS) plays a unique… Click to show full abstract
A recently developed integrative approach combining varied types of experimental data has been successfully applied to three-dimensional modelling of larger biomacromolecular complexes. Deuteration-assisted small-angle neutron scattering (SANS) plays a unique role in this approach by making it possible to observe selected components in the complex. It enables integrative modelling of biomolecular complexes based on building-block structures typically provided by X-ray crystallography. In this integrative approach, it is important to be aware of the flexible properties of the individual building blocks. Here we examine the ability of SANS to detect a subtle conformational change of a multidomain protein using the Fc portion of human immunoglobulin G (IgG) interacting with a soluble form of the low-affinity Fcγ receptor IIIb (sFcγRIIIb) as a model system. The IgG-Fc glycoprotein was subjected to SANS in the absence and presence of 75%-deuterated sFcγRIIIb, which was matched out in D2O solution. This inverse contrast-matching technique enabled selective observation of SANS from IgG-Fc, thereby detecting its subtle structural deformation induced by the receptor binding. The SANS data were successfully interpreted by considering previously reported crystallographic data and an equilibrium between free and sFcγRIIIb-bound forms. Our SANS data thus demonstrate the applicability of SANS in the integrative approach dealing with biomacromolecular complexes composed of weakly associated building blocks with conformational plasticity.
               
Click one of the above tabs to view related content.