LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of immunotherapy based on dendritic cells stimulated by tumor cell-derived exosomes in a syngeneic breast tumor mouse model

Photo from wikipedia

We here evaluated the therapeutic effect of tumor cell-derived exosomes (TEXs)-stimulated dendritic cells (DCs) in a syngeneic orthotopic breast tumor model. The DC line DC2.4 and breast cancer cell line… Click to show full abstract

We here evaluated the therapeutic effect of tumor cell-derived exosomes (TEXs)-stimulated dendritic cells (DCs) in a syngeneic orthotopic breast tumor model. The DC line DC2.4 and breast cancer cell line E0771 originally isolated from C57BL/6 mice were used. E0771 cells stably expressing the exosomal CD63-RFP or luciferase (Luc) and DC2.4 cells stably expressing GFP were produced using lentivirus. TEXs were purified from conditioned medium of E0771/CD63-RFP cells. Breast tumor model was established by injecting E0771/Luc cells into mammary gland fat pad of mice. TEXs contained immune modulatory molecules such as HSP70, HSP90, MHC I, MHC II, TGF-β, and PD-L1. TEXs were easily taken by DC2.4 cells, resulting in a significant increase in the in vitro proliferation and migration abilities of DC2.4 cells, accompanied by the upregulation of CD40. TEX-DC-treated group exhibited a decreased tumor growth compared with control group. CD8+ cells were more abundant in the tumors and lymph nodes of TEX-DC-treated group than in those of control group, whereas many CD4+ or FOXP3+ cells were localized in those of control group. Our results suggest a potential application of TEX-DC-based cancer immunotherapy.

Keywords: breast tumor; group; model; cell; tumor

Journal Title: Biochemistry and Biophysics Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.