LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β.

Photo from wikipedia

Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown… Click to show full abstract

Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown to possess a variety of biological characteristics including anti-inflammatory and anti-tumor. In this study we explored the potential effect and mechanisms of myricetin on pulmonary fibrosis in vivo and vitro. The in vivo studies showed that myricetin effectively alleviated bleomycin (BLM)-induced pulmonary fibrosis. KEGG analysis of RNA-seq data indicated that myricetin could regulate the transforming growth factor (TGF)-β signaling pathway. In vitro studies indicated that myricetin could dose-dependently suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). Molecular docking indicated that heat shock protein (HSP) 90β may be a potential target of myricetin, and MST assay demonstrated that the dissociation constant (Kd) of myricetin and HSP90β was 331.59 nM. We demonstrated that myricetin interfered with the binding of HSP90β and TGF-β receptor II and impeded fibroblast activation and EMT. In conclusion, myricetin impedes TGF-β1-induced lung fibroblast activation and EMT via targeting HSP90β and attenuates BLM-induced pulmonary fibrosis in mice.

Keywords: hsp90; induced pulmonary; pulmonary fibrosis; tgf signaling; myricetin

Journal Title: Biochemical pharmacology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.