LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cytotoxicity of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide in multidrug-resistant cancer cells through activation of PERK/eIF2α/ATF4 pathway.

Photo from wikipedia

After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines.… Click to show full abstract

After decades of research, multidrug resistance (MDR) remains a huge challenge in cancer treatment. In this study, the cytotoxic of 4-hydroxy-N-(naphthalen-1-yl)-2-oxo-2H-chromene-3-carboxamide (MCC1734) has been investigated towards multidrug-resistant cancer cell lines. MCC1734 exerted cytotoxicity on cell lines expressing different mechanisms of drug resistance (P-glycoprotein, BCRP, ABCB5, EGFR, p53 knockout) to a different extent. Interestingly, sensitive CCRF-CEM cells and multidrug-resistant P-gp-overexpressing CEM/ADR5000 cells represented similar sensitivity towards MCC1734, indicating MCC1734 can bypass P-gp-mediated resistance. Microarray-based mRNA expression revealed that MCC1734 affected cells by multiple pathways, including cell cycle regulation, mitochondrial dysfunction, apoptosis signaling, and EIF2 signaling. MCC1734 stimulated the generation of excessive reactive oxygen species and the collapse of mitochondria membrane potential in CCRF-CEM cells, companied by the arrest of the cell cycle in the G2M phase and apoptosis induction as determined by flow cytometry. In addition, our immunoblotting analysis highlighted that MCC1734 triggered endoplasmic reticulum (ER) stress, evidenced by the activation of p-PERK, p-eIF2α, ATF4 and CHOP. The anti-cancer effects of MCC1734 were further observed in vivo using human xenograft tumors transplanted to zebrafish, providing further support for MCC1734 as a promising new candidate for cancer drug development.

Keywords: naphthalen oxo; oxo chromene; chromene carboxamide; multidrug resistant; cancer; hydroxy naphthalen

Journal Title: Biochemical pharmacology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.