LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control

Photo from wikipedia

Abstract The application of nitrate-mediated souring control has been proposed as a promising tool. However, the efficiency of this method remains controversial due to several unresolved issues, such as the… Click to show full abstract

Abstract The application of nitrate-mediated souring control has been proposed as a promising tool. However, the efficiency of this method remains controversial due to several unresolved issues, such as the determination of effective nitrate concentration, the optimal injection period, etc. In this study, we investigated the depletion of specific hydrocarbons as the electron donor for sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) by varying the nitrate concentration (1.5 mM and 4.5 mM) and injection timing (single, Ns; and multiple Nm) to control souring. Based on analysis of bacterial communities, genus Arcobacter was predominant, followed by NRB of family Rhodospirillaceae, which includes Thalassospira sp. By contrast, in the condition without nitrate addition (Nw/o), genus Desulfotignum was dominant. Both SRB and NRB share similar hydrocarbon preferences: toluene, ethylbenzene, and xylene. At the limiting nitrate concentration to suppress SRB activity, 1 mM, SRB could co-exist with NRB and promote a more diverse bacterial community.

Keywords: control; injection; single multiple; reducing bacteria; souring control; sulfate reducing

Journal Title: Biochemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.