LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation performance and microbial community analysis of microbial electrolysis cells for erythromycin wastewater treatment

Photo by jordanmcdonald from unsplash

Abstract Antibiotics represent a major environmental health concern worldwide. In this study, a high concentration of erythromycin (ERY) was degraded by using single-chamber MECs with carbon cloth anodes. The electrochemical… Click to show full abstract

Abstract Antibiotics represent a major environmental health concern worldwide. In this study, a high concentration of erythromycin (ERY) was degraded by using single-chamber MECs with carbon cloth anodes. The electrochemical characteristics of MECs and the correlation with ERY were analysed. High-performance liquid chromatography analysis showed that the removal of ERY reached 99% when the influent concentration of ERY was 20 mg/L. In addition, ermG was the most common antibiotic resistance gene, whether in the reactor effluent (3.37×105 copies/μL DNA) or in the anode biofilm (0.21×105 copies/μL DNA), while ermA was not detected. The SEM images indicated that the anodic and cathodic biofilm were mature and well-constructed. High throughput sequencing of 16S rDNA gene amplicons indicated that Geobacter, as a known genus of exoelectrogenic bacteria, is very dominant in the reactor anode biofilm, with a relative abundance of 77.0%. Acetoanaerobium was widely present in the biocathode. These results indicate that MECs can be considered to be a useful and reliable technology for improving ERY biodegradation efficiency in wastewater, thus providing a meaningful economic output and efficient operation in future scale-ups.

Keywords: wastewater; ery; performance; degradation performance; performance microbial; analysis

Journal Title: Biochemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.