LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Output uncertainty of dynamic growth models: Effect of uncertain parameter estimates on model reliability

Photo by thinkmagically from unsplash

Abstract Mechanistic models are simplifications of bio-physical systems, for which the true values of the model parameters are sometimes unknown. Therefore, before using model-based predictions to study or improve a… Click to show full abstract

Abstract Mechanistic models are simplifications of bio-physical systems, for which the true values of the model parameters are sometimes unknown. Therefore, before using model-based predictions to study or improve a process, it is essential to ensure that the outputs of the model are reliable. This paper covers the development and application of a framework for practical identifiability and uncertainty analyses of dynamic growth models for bioprocesses. By exploring the numerical properties of the sensitivity matrix, a simple algorithm to determine the presence of non-identifiable parameters in models with high output uncertainty is presented. The framework detects the existence of non-identifiable parameters within the model and proposes a regularisation technique, in conjunction with Monte Carlo Analysis. As an example, the framework was used to analyse a macro-kinetic growth model of Escherichia coli describing a fed-batch process. The results show a reduction in the uncertainty of model outputs from a maximum coefficient of variation of 748% to 5% after regularization, and a 15-fold improvement in the accuracy of model predictions for two independent validation datasets. The presented framework aims to improve the reliability of model predictions and promote a more thorough handling of dynamical models to extend their use in biotechnology.

Keywords: dynamic growth; uncertainty; model; output uncertainty; growth models

Journal Title: Biochemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.