LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications

Photo from archive.org

Poly(methylmethacrylate) (PMMA) is a widely used material in dental applications, particularly as denture resins. Due to thermally unstable and wet oral cavity, the implanted PMMA based resins occasionally deform and… Click to show full abstract

Poly(methylmethacrylate) (PMMA) is a widely used material in dental applications, particularly as denture resins. Due to thermally unstable and wet oral cavity, the implanted PMMA based resins occasionally deform and grow bacterial biofilms at the interface between oral cavity and the biomaterial. Several strategies attempted earlier to improve the bacterial resistance and mechanical performance of PMMA. Poly(ethyleneimine) (PEI) is a hyperbranched cationic polymer shown earlier to improve antibacterial activity of resins but do not improve mechanical properties of the resins alone, while silk fibroin (SF) is a natural biopolymer with unique material properties. In this study, we combined SF and PEI towards development of antibacterial and mechanically superior PMMA based materials towards overcoming its drawbacks. Using polyblend electrospinning to combine SF, PEI and PMMA, we successfully developed intrinsically antibacterial and mechanically reinforced nanofiber mats. We propose that the resulting nanofiber mats have the potential to be incorporated into PMMA based denture resin materials to overcome the problems of patients and improve their quality of life.

Keywords: pmma based; polyblend electrospinning; dental applications; silk fibroin; pmma

Journal Title: Bioactive Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.