LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo

Photo by schluditsch from unsplash

Zeolitic Imidazole Frameworks (ZIFs) are widely applied in nanomedicine for their high drug loading, suitable pore size, pH-responsive drug release, and so on. However, fast drug release during circulation, unexpected… Click to show full abstract

Zeolitic Imidazole Frameworks (ZIFs) are widely applied in nanomedicine for their high drug loading, suitable pore size, pH-responsive drug release, and so on. However, fast drug release during circulation, unexpected toxicity to mice major organs, undesirable long-term accumulation in the lung and even death currently hinder their in vivo biomedical applications. Herein, we report an amorphous ZIF-8 (aZIF-8) with high loading of 5-Fu through pressure-induced amorphization. This nano-system avoids early drug release during circulation and provides tumor microenvironment-responsive drug release with improved in vitro cell viability, and survival rate in in vivo evaluations as compared to ZIF-8. Furthermore, aZIF-8 shows longer blood circulation and lower lung accumulation than ZIF-8 at same injected doses. Less drug release during circulation, longer blood circulation, and better biocompatibility of aZIF-8/5-Fu significantly improves its therapeutic efficacy in ECA-109 tumor-bearing mouse, and result in 100% survival rate over 50 days after treatment. Therefore, aZIF-8 with favorable biocompatibility and long blood circulation is expected to be a promising nano-system for efficacious cancer therapy in vivo.

Keywords: accumulation; drug; drug release; zeolitic imidazole; circulation

Journal Title: Bioactive Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.